skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Das, Ayushman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite the significant advancements in the field of Natural Language Processing (NLP), Large Language Models (LLMs) have shown limitations in performing complex tasks that require arithmetic, commonsense, and symbolic reasoning. Reasoning frameworks like ReAct, Chain-of-thought (CoT), Tree-of-thoughts (ToT), etc. have shown success but with limitations in solving long-form complex tasks. To address this, we propose a knowledge-sharing and collaborative multi-agent assisted framework on LLMs that leverages the capabilities of existing reasoning frameworks and the collaborative skills of multi-agent systems (MASs). The objectives of the proposed framework are to overcome the limitations of LLMs, enhance their reasoning capabilities, and improve their performance in complex tasks. It involves generating natural language rationales and in-context few-shot learning via prompting, and integrates the reasoning techniques with efficient knowledge-sharing and communication driven agent networks. The potential benefits of the proposed framework include saving time and money, improved efficiency for computationally intensive reasoning, and the ability to incorporate multiple collaboration strategies for dynamically changing environments. 
    more » « less